Abstract
We compare different approaches towards an effective description of multiscale velocity field correlations in turbulence. Predictions made by the operator-product expansion, the so-called fusion rules, are placed in juxtaposition to an approach that interprets the turbulent energy cascade in terms of a Markov process of velocity increments in scale. We explicitly show that the fusion rules are a direct consequence of the Markov property provided that the structure functions exhibit scaling in the inertial range. Furthermore, the limit case of joint velocity gradient and velocity increment statistics is discussed and put into the context of the notion of dissipative anomaly. We generalize a prediction made by the multifractal model derived by Benzi etal. [R. Benzi et al., Phys. Rev. Lett. 80, 3244 (1998)PRLTAO0031-900710.1103/PhysRevLett.80.3244] to correlations among inertial range velocity increment and velocity gradients of any order. We show that for the case of squared velocity gradients such a relation can be derived from first principles in the case of Burgers equations. Our results are benchmarked by intensive direct numerical simulations of Burgers turbulence.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have