Abstract

Abstract A multiscale analysis has been conducted on hydrogen-induced intergranular cracking at ambient temperature in medium strength (840 MPa) Ni-Cr steel with antimony, tin, and phosphorous segregation. Combining first-principles calculations and fracture mechanics experiments, a multiscale relationship between threshold stress intensity factor (K th) and cohesive energy of grain boundary (the ideal work of interfacial separation, 2γ int) was revealed. The K th was found to decrease rapidly under a certain threshold of 2γ int, where the 2γ int decreases mainly by mobile hydrogen segregation on fracture surfaces. This segregation is considered to arise during formation of the fracture surfaces under thermodynamic equilibrium in slow crack growth. The resulting strong decohesion probably makes it difficult to emit dislocations at the microcrack tip region, leading to a large reduction in stress intensity factor. Our analysis based on this mobile hydrogen decohesion demonstrates that the K th decreases dramatically within a low and narrow range of hydrogen content in iron lattice in high-strength steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.