Abstract
AbstractIt is now well established that microalloying additions of B to Ni3Al drastically reduce low temperature grain boundary fracture and consequently increase the ductility of this intermetallic compound. One possible explanation for such effects involves the relationship between boron segregation to grain boundaries and free surfaces, and the resulting effect of such segregation on the cohesive energy of the grain boundaries. This study involves the extension of these concepts to an alloy based on Ni3Si. Auger spectroscopy has been carried out on fractured grain boundaries, grain interiors, and free surfaces to determine how B segregates in Ni3(Si,Ti). The consequences of the segregation of B on the cohesive energy of grain boundaries in Ni3Si based alloys are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.