Abstract

Chemical activation is a common process for preparing porous carbon electrode materials of supercapacitors. Nevertheless, chemical activation approach has the disadvantages of being chemically caustic, environmentally unfriendly, and expensive. This study constitutes a multi-scale self-template approach for the preparation of lignin-derived hierarchical porous carbons (LHPCs) with high specific surface areas and excellent electrochemical performances. KCl, carbonates, and sulfates, generated in the carbonization process, play the role of multi-scale template agents for the pore-forming process. LHPCs exhibited superb electrochemical performances as electrodes of supercapacitors with alkaline and neutral sulfate electrolytes. In addition, the Zn//LHPCs hybrid supercapacitors (ZIHSCs) achieved an ultra-high energy density of 135 Wh kg−1, which is 20 times higher than symmetric supercapacitors with KOH electrolytes (6.6 Wh kg−1) and 9 times higher than symmetric supercapacitors with Na2SO4 electrolyte (14.8 Wh kg−1). This work proposes a general multi-scale self-template strategy for the synthesis of hierarchical porous carbons from sodium lignosulfonate for supercapacitor applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.