Abstract

Thin-walled members that have one dimension relatively large in comparison to the cross-sectional dimensions are usually modelled by using beam-column type finite element formulations. Beam-column elements however, are based on the assumption of rigid cross-section, thus they cannot consider the cross-sectional deformations such as local buckling and only allows considerations of the beam axis behaviour such as flexural or lateral-torsional buckling. Shell-type finite elements can be used to model the structure in order to consider these local deformation effects. Based on the Bridging multi-scale approach, this study proposes a numerical technique that is able to split the global analysis, which is performed by using simple beam-type elements, from the local analysis which is based on more sophisticated shell-type elements. As a result, the proposed multi-scale method allows the usage of shell elements in a local region to incorporate the local deformation effects on the overall behaviour of thin-walled members without necessitating a shell-type model for the whole member.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call