Abstract

This study presents a multiscale computational model for predicting the mechanical behavior of asphalt mixtures. The model can account for mixture heterogeneities by considering individual mixture constituents through the scale-linking technique: a local scale in a form of the heterogeneous representative volume element and a global scale that has been homogenized from local scale responses. The model is implemented with a finite element formulation, so that geometric complexities, material inelasticity, and the growth of time-dependent damage can be properly handled. Damage is in the form of cracks modeled with nonlinear viscoelastic cohesive zones. The primary purpose of this paper is to present the multiscale modeling framework developed and to evaluate the applicability of the multiscale modeling technique to determine the performance of asphalt mixtures and structures when damaged. This is accomplished by employing only material properties at the constituent level (local scale) as model inputs. The indirect tensile test of fine-aggregate matrix mixture is simulated as an example, and the simulation results are compared with experimental results to evaluate the applicability of the model. Predictive power of the model and the benefits related to the reduction of computational efforts and laboratory tests are further discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.