Abstract

In the first part of this two part study, the mechanical properties necessary for the simulation of tempering of an AISI H13 (DIN 1.2344, X40CrMoV5-1) tool steel was derived using physically based precipitation simulations and microstructure–property relationships. For this purpose, the precipitation of fine carbides were simulated using a thermo-kinetic software which allows prediction of the evolution of precipitation/dissolution reactions and the particle sizes. Then, those microstructural findings were coupled with physically based microstructure–property models to predict the yield stress, flow curve and creep properties. The predicted mechanical properties were verified with corresponding experiments and a good agreement was found. In the second part of this study, those properties were coupled with a Finite Element (FE) model in order to predict the relaxation of internal stresses and the evolution of deformations at the macroscopic scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call