Abstract

Cell membranes consist of a multitude of lipid molecules that serve as a framework for the even greater variety of membrane associated proteins [1–4]. As this highly complex (nonequilibrium) system cannot easily be understood and studied in a controlled way, a wide variety of model systems have been devised to understand the dynamics, structure, and thermodynamics in biological membranes. One such model system is a supported lipid bilayer (SLB), a two-dimensional membrane suspended on a surface. SLBs have been realized to be manageable experimentally while reproducing many of the key features of real biological membranes [5,6]. One of the main advantages of supported bilayers is the physical stability due to the solid support that enables a wide range of surface characterization techniques not available to free or unsupported membranes. As SLBs maintain some of the crucial structural and dynamic properties of biological membranes, they provide an important bridge to natural systems. In order to mimic cell membranes reliably, certain structural and dynamic features have to be reliably reproduced in the artificially constructed lipid bilayers. SLBs should display lateral mobility as in living cells, because many membrane activities involve transport, recruitment, or assembly of specific components. It is also critical for membranes to exhibit the correct thermodynamic phase, namely, a fluid lipid bilayer, to respond to environmental stress such as temperature and pressure changes [7]. There are several ways to fabricate supported lipid bilayers (SLBs) on planar substrates. One can use vesicle fusion on solid substrates [5,8–10] as well as Langmuir-Blodgett deposition [11,12]. Proteoliposome adsorption and subsequent membrane formation on a mica surface was first demonstrated by Brian and McConnell [13]. Because of its simplicity and reproducibility, this is one of the most common approaches to prepare supported membranes. A diverse range of different solid substrates has been used as support material below the bilayer [14,15]. Silicon oxide is the material of choice for vesicle fusion [16]. Polymer cushions dampen the effect of hard surfaces and therefore have been actively investigated [17–20]. However, it is not fully understood which changes the introduction of a solid support introduces into such a biomimetic system. Experimentally it is almost impossible to address such changes, as extremely highresolution data would be required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.