Abstract
In this paper, a micro-to-macro multiscale approach with peridynamics is proposed to study metal-ceramic composites. Since the volume fraction varies in the spatial domain, these composites are called spatially tailored materials (STMs). Microstructure uncertainties, including porosity, are considered at the microscale when conducting peridynamic modeling and simulation. The collected dataset is used to train probabilistic machine learning models via Gaussian process regression, which can stochastically predict material properties. The machine learning models play a role in passing the information from the microscale to the macroscale. Then, at the macroscale, peridynamics is employed to study the mechanics of STM structures with various volume fraction distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.