Abstract

Cuttlebone, the endoskeleton of cuttlefish, offers an intriguing biological structural model for designing low-density cellular ceramics with high stiffness and damage tolerance. Cuttlebone is highly porous (porosity ∼93%) and lightweight (density less than 20% of seawater), constructed mainly by brittle aragonite (95 wt%), but capable of sustaining hydrostatic water pressures over 20 atmospheres and exhibits energy absorption capability under compression comparable to many metallic foams (∼4.4 kJ/kg). In this work, we computationally investigate how such remarkable mechanical efficiency is enabled by the multiscale structure of cuttlebone. Using the common cuttlefish, Sepia Officinalis, as a model system, we first conducted high-resolution synchrotron micro-computed tomography (µ-CT) and quantified the cuttlebone's multiscale geometry, including the 3D asymmetric shape of individual walls, the wall assembly patterns, and the long-range structural gradient of walls across the entire cuttlebone (ca. 38 chambers). The acquired 3D structural information enables systematic finite-element simulations, which further reveal the multiscale mechanical design of cuttlebone: at the wall level, wall asymmetry provides optimized energy absorption while maintaining high structural stiffness; at the chamber level, variation of walls (number, pattern, and waviness amplitude) contributes to progressive damage; at the entire skeletal level, the gradient of chamber heights tailors the local mechanical anisotropy of the cuttlebone for reduced stress concentration. Our results provide integrated insights into understanding the cuttlebone's multiscale mechanical design and provide useful knowledge for the designs of lightweight cellular ceramics. Statement of significanceCuttlebone has been demonstrated to be a biological ceramic cellular material with remarkable lightweight, high stiffness and energy absorption. However, our knowledge on how such mechanical properties are enabled by cuttlebone's multiscale structure is not complete. Here, we combine systematic tomography-based 3D structural analysis and finite-element simulations to reveal how the hierarchical structure of cuttlebone at multiple length scales synergistically contribute to cuttlebone's impressive mechanical efficiency. These findings have important implications for designing biomimetic low-density cellular ceramic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call