Abstract

ABSTRACT The high explosive PBX 9502 undergoes irreversible expansion during thermal cycling (“ratchet growth”). Recent innovations in thermomechanical modeling via homogenization strategies are beginning to incorporate mesoscale information such as grain size, total porosity, and spatial distribution of voids and cracks. To generate a complete experimental data set to challenge and inform these models, PBX 9502 pellets were thermally cycled, cross-sectioned using ion polishing, and imaged in high resolution with scanning electron microscopy. Ratchet growth was found to drive expansion through microcracking. Microcracks were affected by agglomeration of crystals within the PBX. Virgin material showed greater ratchet growth than recycled material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call