Abstract

Motivated by the hierarchical multiscale image representation of Tadmor et. al., (25), we propose a novel integro-differential equation (IDE) for a multiscale image representation. To this end, one integrates in inverse scale space a succession of refined, recursive 'slices' of the image, which are balanced by a typical curvature term at the finer scale. Although the original moti- vation came from a variational approach, the resulting IDE can be extended using standard techniques from PDE-based image processing. We use filtering, edge preserving and tangential smoothing to yield a family of modified IDE models with applications to image denoising and image deblurring problems. The IDE models depend on a user scaling function which is shown to dictate the BV ∗ properties of the residual error. Numerical experiments demonstrate application of the IDE approach to denoising and deblurring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.