Abstract

Hydrogels are a promising class of material in biomedical and industrial applications, where both the mechanical and diffusion properties play an important role. The wide range of polymers that can be used and the different production methods allows these properties to be specifically tuned to a high degree for their application. Producing tough hydrogels with high stiffness has been a long-standing challenge that has recently been addressed by mineralisation methods. Those methods modify the hydrogel into one with a supporting mineral microstructure that is highly heterogeneous.This work investigates methods to determine the macroscopic diffusion behaviour of heterogeneous gels by a homogenisation method implemented in a finite element framework. This is applied to two recently developed materials by calcifying poly-dimethyl-acrylamide (PDMA) and polyacrylamide hydrogels (PAAm). The former has porous, spherical inclusions obstructing diffusion, while the latter has spherical pores enabling it. For both gels the unobstructed volume can be used as the primary parameter to tune the diffusivity. In PDMA the porosity of the obstructions is shown by multiscale analysis to give a strong, non-linear dependence of the diffusivity on the solute molecule radius. The framework is extended to other materials and comparisons are made to experimental works from the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.