Abstract

It has become more important to measure accurate depth profiles in developing more advanced devices. To this aim, Depth profiling in secondary ion mass spectrometry (SIMS) has been extensively used as an informative technique in the semiconductor and electronic devices fields due to its high sensitivity, quantification accuracy and depth resolution (Fujiyama et al, 2011; Seki et al, 2011). However, the depth resolution in SIMS analysis is still limited to provide reliable and precise information in very thin structures such as delta layers, abrupt interfaces, etc. By optimization of the experimental conditions, the depth resolution can be enhanced. In particular, lowering the primary energy seems to be a good solution, but this increases the measurement time and leads to other limitations, owing to the wrong focalization of primary ion beam, such as roughness in the crater bottom, not flat crater, etc. Therefore, the depth resolution remains so far to its perfect limit. It is only by numerical processing like deconvolution that the depth resolution can be improved beyond its experimental limits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.