Abstract
Cellulose acetate (CA), a prominent water-soluble derivative of cellulose, is a promising biodegradable ingredient that has applications in films, membranes, fibers, drug delivery, and more. In this work, we present a molecularly informed field-theoretic model for CA to explore its phase behavior in aqueous solutions. By integrating atomistic details into large-scale field-theoretic simulations via the relative entropy coarse-graining framework, our approach enables efficient calculations of CA's miscibility window as a function of the degree of substitution (DS) of cellulose hydroxyl groups with acetate side chains. This allows us to capture the intricate phase behavior of CA, particularly its unique miscibility at intermediate substitution, without relying on experimental input. Additionally, the model directly probes CA solution behavior specific to the relative DS at C2, C3, and C6 alcohol sites, providing insights for the rational design of water-soluble CA for diverse applications. This work demonstrates a promising integration of molecularly informed field theories, complementing wet-lab experimentation, for engineering the next-generation polymeric materials with precisely tailored properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.