Abstract
This work develops a first-principles-based three-dimensional, multiscale computational fluid dynamics (CFD) model, together with reactor geometry optimizations, of SiO2 thin-film thermal atomic layer deposition (ALD) using bis(tertiary-butylamino)silane (BTBAS) and ozone as precursors. Specifically, an accurate macroscopic CFD model of the ALD reactor chamber gas-phase development is integrated with a detailed microscopic kinetic Monte Carlo (kMC) model that was developed in Ding et al. (2019), accounting for the microscopic lattice structure, atomic interactions and detailed surface chemical reactions. The multiscale information exchange and the transient simulation of the microscopic distributed kMC algorithms and the macroscopic CFD model are achieved through a parallel processing message passing interface (MPI) structure. Additionally, density functional theory (DFT)-based calculations are adopted to compute the key thermodynamic and kinetic parameters for the microscopic thin-film growth process. Recognizing the transient non-uniformity and the possibility to reduce the current ALD cycle time, the optimal configuration of reactor geometry is designed and evaluated including a showerhead panel adjustment and geometry modifications on reactor inlet and upstream. It is demonstrated that with suitable reactor chamber design the required BTBAS ALD half-cycle time can be reduced by 39.6%.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have