Abstract
Herein, state‐of‐the‐art multiscale modeling methods have been described. This research includes notable molecular, micro‐, meso‐, and macroscale models for hard (polymer, metal, yarn, fiber, fiber‐reinforced polymer, and polymer matrix composites) and soft (biological tissues such as brain white matter [BWM]) composite materials. These numerical models vary from molecular dynamics simulations to finite‐element (FE) analyses and machine learning/deep learning surrogate models. Constitutive material models are summarized, such as viscoelastic hyperelastic, and emerging models like fractional viscoelastic. Key challenges such as meshing, data variability and material nonlinearity‐driven uncertainty, limitations in terms of computational resources availability, model fidelity, and repeatability are outlined with state‐of‐the‐art models. Latest advancements in FE modeling involving meshless methods, hybrid ML and FE models, and nonlinear constitutive material (linear and nonlinear) models aim to provide readers with a clear outlook on futuristic trends in composite multiscale modeling research and development. The data‐driven models presented here are of varying length and time scales, developed using advanced mathematical, numerical, and huge volumes of experimental results as data for digital models. An in‐depth discussion on data‐driven models would provide researchers with the necessary tools to build real‐time composite structure monitoring and lifecycle prediction models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.