Abstract

AbstractThe introduction of enlarged and interconnected nanochannels into metal–organic frameworks (MOFs) overcome their micropore size restriction, enhances mass transportation, and improves the accessibility of anchored metal clusters. Herein, foamed Ce‐MOF single crystals (F‐Ce‐MOF‐SC‐x) designed from a multiscale co‐assembly is reported in the presence of a copolymer template and 1,3,5‐trimethylbenzene as a structural regulator. The resultant F‐Ce‐MOF‐SC‐x possessed well‐defined microporous tandem‐ordered meso‐macroporous foams with superior connectivity and versatile Ce‐defective unsaturated sites (Ce‐DUS). F‐Ce‐MOF‐SC‐x is applied as a stable carrier for anchoring polytertiary amines (PA) via coordination interactions with Ce‐DUS. Owing to the superior ability of PA to recognize SO2, the resultant F‐Ce‐MOF‐SC‐x@yPA delivers exceptional performance in terms of the high‐temperature reversible adsorption and separation of SO2, including a remarkable capacity for SO2, spectacular selectivity for SO2/CO2/N2, an ultrafast adsorption equilibrium rate, and stability for 50 cycles. These characteristics are outstanding among those of MOFs and superior to those of many reported SO2 adsorbents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.