Abstract

Crack initiation in unidirectional off-axis laminates made of carbon fiber and epoxy resin is predicted based on multiscale modeling. This multiscale modeling consists of two finite-element analyses (FEA) on different scales. One is macroscopic FEA, based on the assumption of homogeneous materials, and the other is microscopic periodic unit-cell (PUC) analysis using a micromechanical model. The macroscopic FEA is performed by applying uniaxial tension to off-axis laminates, in which we employ an anisotropic elasto-plastic constitutive law to obtain accurate deformation fields in laminates. In the microscopic PUC analysis, the strain history at a point in laminates obtained from the macroscopic FEA is applied as external forces, and crack initiation is predicted using two failure criteria for the matrix resin. The first is the dilatational energy density criterion under elastic deformation, and the second is a ductile damage growth law under plastic deformation. The simulated predictions are compared with the experiments results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.