Abstract
ObjectivesRestored teeth undergo more damage than intact teeth. Therefore, the scientific investigation of their mechanical and physical behaviour under varying oral conditions is vital. The current study is to numerically investigate the stresses on a class-II mesio-occluso-distal (MOD) restored molar due to thermal and thermomechanical stimuli with varying input properties such as coefficient of thermal expansion and elastic properties. This is performed to optimise the dental restoration material, thereby reducing the stresses and failure of the restoration. MethodsAn upper molar was scanned using μ-CT for segmenting and modelling the enamel and dentine. A class-II MOD cavity was then prepared on the model, after which non-manifold meshing was generated. The coefficient of thermal expansion (CTE) and elastic modulus (E) properties of the restoration were varied from 20 × 10−6 °C-1 to 55 × 10−6 °C-1 and 5 GPa–20 GPa, respectively. After the material properties and boundary conditions were set for the finite element (FE) analysis, the thermal and thermomechanical loading analyses were performed to demonstrate the influence of input parameters on the stress. The maximum values of principal stresses on the restoration-enamel junction and the restoration were evaluated. The results were statistically processed using analysis of variance, response surface methodology (RSM) and optimisation analysis to estimate the most optimum inputs for minimising principal stresses. ResultsThe study reveals that the location of principal stress occurs at the restoration-enamel junction (REJ) and the restoration changes based on the composite material value of E and CTE due to thermal and thermomechanical stimuli. The REJ showed higher principal stress than restoration during the application of both thermal and thermomechanical stimuli, making it more vulnerable to fracture and failure. Moreover, the study showed non-linear variations in the values and locations of principal stresses due to thermal and thermomechanical stimuli with the change in the property of the restoration composite used. Finally, this study derived an optimised restorative value for CTE and E due to the application of thermal and simultaneous thermal and mechanical stimuli. ConclusionThis study highlights the importance of choosing the suitable material properties of the restoration composite by dental clinicians to repair a large class MOD cavity. The findings from this study also suggest that the difference in the values of E and CTE in a dental restoration composite when compared with the enamel causes a lack of uniformity in mechanical and thermal properties, thereby forming stress concentrations at the interfaces. The study establishes two optimised CTE and E values for the MOD restoration composite as 25 × 10−6 °C-1 and 20 GPa and 37 × 10−6 °C-1 and 5 GPa, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the mechanical behavior of biomedical materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.