Abstract

This paper developed the anti-derivative wavelet bases to handle the more general types of boundary conditions: Dirichlet, mixed and Neumann boundary conditions. The boundary value problem can be formulated by the variational approach, resulting in a system involving unknown wavelet coefficients. The wavelet bases are constructed to solve the unknown solutions corresponding to the types of solution spaces. The augmentation method is presented to reduce the dimension of the original system, while the convergence rate is in the same order as the multiresolution method. Some numerical examples have been shown to confirm the rate of convergence. The examples of the singularly perturbed problem with Neumann boundary conditions are also demonstrated, including highly oscillating cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.