Abstract

In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal’s orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the number of observations/samples needed in terms of the signal-to-noise ratio (SNR) (the signal energy divided by the noise variance) in order to drive the mean-square error to zero. Previous work showed that if the translations are drawn from the uniform distribution, then, in the low SNR regime, the sample complexity of the problem scales as <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\omega (1/ \mathrm {SNR}^{3})$ </tex-math></inline-formula> . In this paper, using a generalization of the Chapman–Robbins bound for orbits and expansions of the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\chi ^{2}$ </tex-math></inline-formula> divergence at low SNR, we show that in the same regime the sample complexity for any aperiodic translation distribution scales as <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\omega (1/ \mathrm {SNR}^{2})$ </tex-math></inline-formula> . This rate is achieved by a simple spectral algorithm. We propose two additional algorithms based on non-convex optimization and expectation–maximization. We also draw a connection between the multireference alignment problem and the spiked covariance model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.