Abstract

With the prior knowledge that the primary user is highly likely idle and the primary signals are digitally modulated, we propose an optimal Bayesian detector for spectrum sensing to achieve higher spectrum utilization in cognitive radio networks. We derive the optimal detector structure for MPSK modulated primary signals with known order over AWGN channels and give its corresponding suboptimal detectors in both low and high SNR (Signal-to-Noise Ratio) regimes. Through approximations, it is found that, in low SNR regime, for MPSK (M>2) signals, the suboptimal detector is the energy detector, while for BPSK signals the suboptimal detector is the energy detection on the real part. In high SNR regime, it is shown that, for BPSK signals, the test statistic is the sum of signal magnitudes, but uses the real part of the phase-shifted signals as the input. We provide the performance analysis of the suboptimal detectors in terms of probabilities of detection and false alarm, and selection of detection threshold and number of samples. The simulations have shown that Bayesian detector has a performance similar to the energy detector in low SNR regime, but has better performance in high SNR regime in terms of spectrum utilization and secondary users' throughput.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.