Abstract

The multi-pulse homoclinic orbits and chaotic dynamics for an axially moving viscoelastic beam are investigated in the case of 1:2 internal resonance. On the basis of the modulation equations derived by the method of multiple scales, the theory of normal form is utilized to find the explicit formulas of normal form associated with a double zero and a pair of pure imaginary eigenvalues. The energy-phase method is employed to analyze the global bifurcations for the axially moving viscoelastic beam. The results obtained here indicate that there exist the Silnikov-type multi-pulse orbits homoclinic to certain invariant sets for the resonant case, leading to chaos in the system. Homoclinic trees which describe the repeated bifurcations of multi-pulse solutions are found. To illustrate the theoretical predictions, we present visualizations of these complicated structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.