Abstract

We aimed to develop an efficient detection platform that can identify a larger number of suspicious samples in a single test, saving time, manpower, and material costs, and providing vital support to the public health system in coping with the current challenging and dynamic bioterrorism threat landscape, particularly in regions of turmoil and conflict. We have successfully developed a high-throughput, multitarget fluorescent array detection platform by effectively combining integrating multiprobe amplification (MPA) with melting curve analysis. Specifically, we have established reliable laboratory testing methods for eight highly pathogenic bacteria, including Bacillus anthracis, Yersinia pestis, Brucella spp., Burkholderia pseudomallei, Francisella tularensis, Vibrio cholerae, Salmonella typhi, and Staphylococcus aureus. Our method achieves sensitive and specific simultaneous detection of eight target bacteria in one well by optimizing the reaction conditions of MPA. In the assessment of 192 simulated environmental samples, both positive and negative coincidence rates were 100.00%. Among 48 simulated clinical samples, the positive coincidence rate reached 97.73%, while maintaining a perfect negative coincidence rate of 100.00%. Moreover, the detection platform holds immense potential for attaining a more comprehensive bioterrorism screening, and its high cost-effectiveness enables the provision of diverse and adaptable diagnostic methods for public health quarantine in underdeveloped countries and regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.