Abstract
Problem definition: We consider a multiportfolio optimization problem in which nonlinear market impact costs result in a strong dependency of one account’s performance on the trading activities of the other accounts. Methodology/results: We develop a novel target-oriented model that jointly optimizes the rebalancing trades and the split of market impact costs. The key advantages of our proposed model include the consideration of clients’ targets on investment returns and the incorporation of distributional uncertainty. The former helps fund managers to circumvent the difficulty in identifying clients’ utility functions or risk parameters, whereas the latter addresses a practical challenge that the probability distribution of risky asset returns cannot be fully observed. Specifically, to evaluate the quality of multiple portfolios’ investment payoffs in achieving targets, we propose a new class of performance measures, called fairness-aware multiparticipant satisficing (FMS) criteria. These criteria can be extended to encompass distributional uncertainty and have the salient feature of addressing the fairness issue with the collective satisficing level as determined by the least satisfied participant. We find that, structurally, the FMS criteria have a dual connection with a set of risk measures. For multiportfolio optimization, we consider the FMS criterion with conditional value-at-risk being the underlying risk measure to further account for the magnitude of shortfalls against targets. The resulting problem, although nonconvex, can be solved efficiently by solving an equivalent converging sequence of tractable subproblems. Managerial implications: For the multiportfolio optimization problem, the numerical study shows that our approach outperforms utility-based models in achieving targets and in out-of-sample performance. More generally, the proposed FMS criteria provide a new decision framework for operational problems in which the decision makers are target-oriented rather than being utility maximizers and issues of fairness and ambiguity should be considered. Funding: This work was supported by the Hong Kong Research Grants Council [Grants 14210821, 16204521], Leading Talent Program of Guangdong Province [Grant 2016LJ06D703], and the National Natural Science Foundation of China [Grants 71971187, 72171156, 72231002, 72331009]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0363 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.