Abstract

The multipolar velocity field structures are investigated by 2D momentum conservation equation with 3D equilibrium sheared flows in the full toroidal system. Numerical results show that the non-existence of radial velocity field in equilibrium surfaces is suitable only for the zero-order term of our 2D simulation. The non-zero-order radial velocity field is still preserved, even when converted to conventional magnetic surface coordinates. The distribution of velocity field vectors of the order of 1, 2, and 3 are presented respectively in 2, 4, and 6 polar fields with the local vortex structure. The excitation mechanisms of these velocity vortices are the coupling effects of the magneto-fluid structure patterns and the toroidal effects. These results can help us understand the complexity of core physics, the transverse transport across magnetic field by the radial plasma flow and the formation of velocity vortices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.