Abstract
ABSTRACTIn this work, we introduce a modification into the technique, presented in A. Cordero, J.L. Hueso, E. Martínez, and J.R. Torregrosa [Increasing the convergence order of an iterative method for nonlinear systems, Appl. Math. Lett. 25 (2012), pp. 2369–2374], that increases by two units the convergence order of an iterative method. The main idea is to compose a given iterative method of order p with a modification of Newton's method that introduces just one evaluation of the function, obtaining a new method of order p+2, avoiding the need to compute more than one derivative, so we improve the efficiency index in the scalar case. This procedure can be repeated n times, with the same approximation to the derivative, obtaining new iterative methods of order p+2n. We perform different numerical tests that confirm the theoretical results. By applying this procedure to Newton's method one obtains the well known fourth order Ostrowski's method. We finally analyse its dynamical behaviour on second and third degree real polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.