Abstract

<abstract><p>Ostrowski's iterative method is a classical method for solving systems of nonlinear equations. However, it is not stable enough. In order to obtain a more stable Ostrowski-type method, this paper presented a new family of fourth-order single-parameter Ostrowski-type methods for solving nonlinear systems. As a generalization of the Ostrowski's methods, the Ostrowski's methods are a special case of the new family. It was proved that the order of convergence of the new iterative family was always fourth-order when the parameters take any real number. Finally, the dynamical behavior of the family was briefly analyzed using real dynamical tools. The new iterative method can be applied to solve a wide range of nonlinear equations, and it was used in numerical experiments to solve the Hammerstein equation, boundary value problem, and nonlinear system. These numerical results supported the theoretical results.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.