Abstract

The realization of a genuine phase transition in quantum mechanics requires that at least one of the Kato's exceptional-point parameters becomes real. A new family of finite-dimensional and time-parametrized quantum-lattice models with such a property is proposed and studied. All of them exhibit, at a real exceptional-point time $t=0$, the Jordan-block spectral degeneracy structure of some of their observables sampled by Hamiltonian $H(t)$ and site-position $Q(t)$. The passes through the critical instant $t=0$ are interpreted as schematic simulations of non-equivalent versions of the Big-Bang-like quantum catastrophes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.