Abstract
Multiplicity results are proved for solutions both with positive and negative energy, as well as nonexistence results, of a generalized quasilinear Schrödinger potential free equation in the entire RN\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {R}}^N$$\\end{document} involving a nonlinearity which combines a power-type term at a critical level with a subcritical term, both with weights. The equation has been derived from models of several physical phenomena such as superfluid film in plasma physics as well as the self-channelling of a high-power ultra-short laser in matter. Proof techniques, also in the symmetric setting, are based on variational tools, including concentration compactness principles, to overcome lack of compactness, and the use of a change of variable in order to deal with a well defined functional.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have