Abstract

Stealthy attacks in sensor and actuator loops are the research priorities in the security of cyber-physical systems. Existing attacks define the stealthiness conditions against the Chi-square or Kullback-Leibler divergence detectors and parameterize the attack model based on additive signals. Such conditions ignore the potential anomalies of the vulnerable outputs in the control layer, and the attack sequences need to be generated online, increasing the hardware and software costs. This paper investigates a type of multiplicative attack with essential stealthiness where the employed model is a novel form. The advantage is that the parameters can be designed in a constant form without having to be generated online. An essential stealthiness condition is proposed for the first time and complements the existing ones. Two sufficient conditions for the existence of constant attack matrices are given in the form of theorems, where two methods for decoupling the unknown variables are particularly considered. A quadruple-tank process, an experimental platform for attack and defense, is developed to verify the theoretical results. The experiments indicate that the proposed attack strategy can fulfill both the attack performance and stealthiness conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call