Abstract
Processes involved in the formation of electron collision cascades created by nonrelativistic high-energy electrons, which can develop in materials exposed to electron and gamma radiation fluxes, have been considered. The problem is solved using the Boltzmann kinetic equation for high-energy electrons moving in a medium. A model scattering indicatrix is constructed for this equation with an arbitrary potential of interaction between colliding particles. Using this scattering indicatrix, the distribution of the particle energies is obtained. Based on this energy distribution (with an arbitrary interparticle interaction potential), a cascade function is found that describes the multiplication of knock-out electrons (electron cascade) generated when a high-energy electron with a certain energy is scattered on the electron subsystem of the irradiated material. The cascade function has been calculated for the Coulomb potential of the interaction between a high-energy electron and atomic-shell electrons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.