Abstract

The ongoing global pandemic (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a huge public health issue. Hence, we devised a multiplex reverse transcription loop-mediated isothermal amplification (mRT-LAMP) coupled with a nanoparticle-based lateral flow biosensor (LFB) assay (mRT-LAMP-LFB) for diagnosing COVID-19. Using two LAMP primer sets, the ORF1ab (opening reading frame 1a/b) and N (nucleoprotein) genes of SARS-CoV-2 were simultaneously amplified in a single-tube reaction, and detected with the diagnosis results easily interpreted by LFB. In presence of FITC (fluorescein)-/digoxin- and biotin-labeled primers, mRT-LAMP produced numerous FITC-/digoxin- and biotin-attached duplex amplicons, which were determined by LFB through immunoreactions (FITC/digoxin on the duplex and anti-FITC/digoxin on the test line of LFB) and biotin/treptavidin interaction (biotin on the duplex and strptavidin on the polymerase nanoparticle). The accumulation of nanoparticles leaded a characteristic crimson band, enabling multiplex analysis of ORF1ab and N gene without instrumentation. The limit of detection (LoD) of COVID-19 mRT-LAMP-LFB was 12 copies (for each detection target) per reaction, and no cross-reactivity was generated from non-SARS-CoV-2 templates. The analytical sensitivity of SARS-CoV-2 was 100% (33/33 oropharynx swab samples collected from COVID-19 patients), and the assay's specificity was also 100% (96/96 oropharynx swab samples collected from non-COVID-19 patients). The total diagnostic test can be completed within 1 h from sample collection to result interpretation. In sum, the COVID-19 mRT-LAMP-LFB assay is a promising tool for diagnosing SARS-CoV-2 infections in frontline public health field and clinical laboratories, especially from resource-poor regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call