Abstract

Quantitative real-time polymerase chain reactions (qPCRs) of the most prevalent bacteria causing foodborne diseases worldwide, such as Salmonella spp., Escherichia coli, and Staphylococcus aureus, can be an important tool for quantitative microbial risk assessment, which requires numerical data to determine the level of contamination at a specific stage of food production. However, most of qPCR assays described in the literature for these pathogens are qualitative; their objective is pathogen detection and not pathogen quantification. Thus, the aim of our work was to develop a qPCR for the simultaneous quantification of Salmonella spp., E. coli, and S. aureus and to propose its use in the analysis of foods, as a tool for microbiological quality monitoring. For this, a multiplex qPCR was standardized for the simultaneous quantification of specific fragments of target genes (ssf, phoA, and nuc) corresponding to each one of the mentioned bacteria. The limit of detection of the technique was 13, 10, and 12 gene copies for ssf, phoA, and nuc, respectively; standard curves showed R2 > 0.99, with efficiencies ranging from 99 to 110%, and inter- and intraexperiment reproducibility presented a low coefficient of variation in all trials. This methodology was applied in different food matrices (milk, ground beef, and oyster meat), and the results were compared with official microbiological culture methodology and with ready-to-use test. Advantages and disadvantages of each methodology used in this study are pointed out. We suggest that this multiplex qPCR can be used as a rapid screening technique for the analysis of food microbiological quality.

Highlights

  • Foodborne diseases (FBDs) constitute a serious public health problem worldwide, owing to the significant morbidity and mortality rates associated with FBDs

  • In 2016, the Centers for Disease Control and Prevention (CDC) estimated the number of illnesses, hospitalizations, and deaths from FBD in the United States; Salmonella spp. and S. aureus were among the prevailing pathogens related to illnesses, holding the second and fifth places, respectively

  • Through the BLASTn Program, all sequences amplified by the primers described in this study showed 100% similarity with Salmonella (AE 006468.2), E. coli (FJ546461), and S. aureus (AP 017320.1)

Read more

Summary

Introduction

Foodborne diseases (FBDs) constitute a serious public health problem worldwide, owing to the significant morbidity and mortality rates associated with FBDs. Salmonella spp., Escherichia coli, and Staphylococcus aureus are among the ten most common bacteria causing notified bacterial FBD globally [2] and are in the list of the main causes of diseases, hospitalizations, and deaths from FBD in the United. In 2016, the CDC estimated the number of illnesses, hospitalizations, and deaths from FBD in the United States; Salmonella spp. (nontyphoid) and S. aureus were among the prevailing pathogens related to illnesses, holding the second and fifth places, respectively. Concerning hospitalizations, infections by Salmonella and E. coli (STEC 0157) occupied the first and fifth places, respectively, and, among the FBDs resulting in death, Salmonella occupied the first place [3]. In Brazil, research carried out between the years 2000 and 2016 confirmed that, among the 11.477 notified outbreaks of FBDs, 1627 were caused by Salmonella spp. In Brazil, research carried out between the years 2000 and 2016 confirmed that, among the 11.477 notified outbreaks of FBDs, 1627 were caused by Salmonella spp. (14.2% of the total), 865 by S. aureus (7.5%), and 749 by BioMed Research International

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call