Abstract

G protein-coupled receptors (GPCRs) constitute the most versatile family of pharmacological target proteins. For some "orphan" GPCRs, no ligand or drug-like modulator is known. In this study, we have established and applied a parallelized assay to coscreen 29 different human GPCRs. Three compounds, chlorhexidine, Lys-05, and 9-aminoacridine, triggered transient Ca2+ signals linked to the expression of GPR30. GPR30, also named G protein-coupled estrogen receptor 1 (GPER1), was reported to elicit increases in cAMP in response to 17β-estradiol, 4-hydroxytamoxifen, or G-1. These findings could, however, not be reproduced by other groups, and the deorphanization of GPR30 is, therefore, intensely disputed. The unbiased screen and following experiments in transiently or stably GPR30-overexpressing HEK293 cells did not show responses to 17β-estradiol, 4-hydroxytamoxifen, or G-1. A thorough analysis of the activated signaling cascade revealed a canonical Gq-coupled pathway, including phospholipase C, protein kinase C and ERK activation, receptor internalization, and sensitivity to the Gq inhibitor YM-254890. When expressed in different cell lines, the localization of a fluorescent GPR30 fusion protein appeared variable. An efficient integration into the plasma membrane and stronger functional responses were found in HEK293 and in MCF-7 cells, whereas GPR30 appeared mostly retained in endomembrane compartments in Cos-7 or HeLa cells. Thus, conflicting findings may result from the use of different cell lines. The newly identified agonists and the finding that GPR30 couples to Gq are expected to serve as a starting point for identifying physiologic responses that are controlled by this GPCR. SIGNIFICANCE STATEMENT: This study has identified and thoroughly characterized novel and reliably acting agonists of the G protein-coupled receptor GPER1/GPR30. Applying these agonists, this study demonstrates that GPR30 couples to the canonical Gq-phospholipase C pathway and is rapidly internalized upon continuous exposure to the agonists.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call