Abstract
In computational pathology, automated tissue phenotyping in cancer histology images is a fundamental tool for profiling tumor microenvironments. Current tissue phenotyping methods use features derived from image patches which may not carry biological significance. In this work, we propose a novel multiplex cellular community-based algorithm for tissue phenotyping integrating cell-level features within a graph-based hierarchical framework. We demonstrate that such integration offers better performance compared to prior deep learning and texture-based methods as well as to cellular community based methods using uniplex networks. To this end, we construct celllevel graphs using texture, alpha diversity and multi-resolution deep features. Using these graphs, we compute cellular connectivity features which are then employed for the construction of a patch-level multiplex network. Over this network, we compute multiplex cellular communities using a novel objective function. The proposed objective function computes a low-dimensional subspace from each cellular network and subsequently seeks a common low-dimensional subspace using the Grassmann manifold. We evaluate our proposed algorithm on three publicly available datasets for tissue phenotyping, demonstrating a significant improvement over existing state-of-the-art methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have