Abstract

Multiple-quantum spin dynamics is studied using analytic and numerical methods for one-dimensional finite linear chains and rings of nuclear spins 1/2 coupled by dipole-dipole interactions. An approximation of dipole-dipole interaction between nearest neighbors having the same constants is used to obtain exact expressions for the intensities of the multiple-quantum coherences in the spin systems studied, which are initially in thermal equilibrium and whose evolution is described by a two-spin two-quantum Hamiltonian. An approximation of nearest neighbors with arbitrary dipole-dipole interaction constants is used to establish a simple relationship between the multiple-quantum dynamics and the dynamics of spin systems with an XY Hamiltonian. Numerical methods are developed to calculate the intensities of multiple-quantum coherences in multiple-quantum NMR spectroscopy. The integral of motion is obtained to expand the matrix of the two-spin two-quantum Hamiltonian into two independent blocks. Using the nearest-neighbor approximation the Hamiltonian is factorized according to different values of the projection operator of the total spin momentum on the direction of the external magnetic field. Results of calculations of the multiple-quantum dynamics in linear chains of seven and eight nuclear spins and a six-spin ring are presented. It is shown that the evolution of the intensities of the lowest-order multiple-quantum coherences in linear chains is accurately described allowing for dipole-dipole interaction of nearest and next-nearest neighbors only. Numerical calculations are used to compare the contributions of nearest and remote spins to the intensities of the multiple-quantum coherences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call