Abstract

An optical encryption method of multiple-image based on spatial angle multiplexing and double random phase encoding is proposed in this paper. In the encryption process, firstly the original images are modulated by random phase in Fresnel transform with different diffraction distances. Secondly, the modulated images are coherently superposed with reference beams which have different spatial angles and random phases, to generate interference fringes. Finally, the interference fringes from different directions are superposed to form a compound encrypted image. In the decryption process, the compound image is placed in a spatial filtering and Fresnel diffraction system, and the decrypted images are obtained after implementing the different phase keys’ demodulation and Fresnel diffraction with correct distance. This method encrypts multiple images into a single gray-scale image, which is easy to save and transmit. The double random phases are placed in object light and reference light respectively, which reduces the complexity of the encryption system and overcomes the difficulty of pixel-by-pixel alignment of random phase keys in traditional decryption experiment. At the same time, the multiplexing capacity of the proposed encryption system is analyzed, and the result shows that the system has sufficient encryption capacity. So the proposed method possesses the characteristics of high storage efficiency, simple calculation and strong anti-noise ability, and thus can encrypt multiple images simultaneously. In this paper, the encryption effect is evaluated by correlation coefficient, while the effectiveness and security are verified by simulation experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call