Abstract

We introduce a multiple-view 3D-shape-reconstruction system. This system is able to fuse few-view and erroneous depth maps into a more complete and more accurate shape representation using a unique neural network (NN). The NN provides analytic mapping and learning of a polyhedron model to approximate the true shape of an object based on multiple-view depth maps. The depth maps are obtained by a widely used Tsai-Shah shape-from-shading (SFS) algorithm. They are considered as partial 3D shapes of the object to be reconstructed. The main insight of this work is that the NN minimizes the depth map error in one view using depth maps information from other views observed under nonfixed light source positions relative to the object. Theoretically, we formulate our problem as nonparametric (local) regression in depth space formed by multiple view observations. Experimentally, we obtain exact and stable results through hierarchical reconstruction and annealing reinforcement. We provide the implementation of the NN used in this paper at .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.