Abstract

Simulated Annealing (SA) is a powerful stochastic search method that can produce very high quality solutions for hard combinatorial optimization problem. In this paper, we applied this SA method to optimize our 3D hierarchical reconstruction neural network (NN). This NN deals with complicated task to reconstruct a complete representation of a given object relying only on a limited number of views and erroneous depth maps of shaded images. The depth maps are obtained by Tsai-Shah shape-from-shading (SFS) algorithm. The experimental results show that the SA optimization enable our reconstruction system to escape from a local minima. Hence, it gives more exact and stable results with small additional computation time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.