Abstract

Existing dynamic traffic assignment formulations predominantly assume the timedependent O-D trip matrix and the time-dependent network configuration to be known a priori for the entire planning horizon. However, there is also a need to provide real-time path information to network users under ATIS/ATMS when unpredicted variations in O-D desires and/or network characteristics (e.g. capacity reduction on certain links due to incidents) occur. This paper presents a rolling horizon framework for addressing the real-time traffic assignment problem, where an ATIS/ATMS controller is assumed to have O-D desires up to the current time interval, and short-term and mediumerm forecasts of future O-D desires. The assignment problem is solved in quasi-real time for a near-term future duration (or stage) to determine an optimal path assignment scheme for users entering the network in real-time for the short-term roll period. The resulting model is intricate due to the intertemporal dependencies characterizing this problem. Two formulations are discussed based on whether a capability to reroute vehicles en route exists. A rolling horizon solution procedure amenable to a quasi-real time implementation of a multiple user classes (MUC) time-dependent traffic assignment solution algorithm developed previously by the authors is described. Implementation issues are discussed from the perspective of ATIS/ATMS applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.