Abstract

Numerous quantitative ultrasound imaging techniques have demonstrated superior monitoring performance for thermal ablation when compared to conventional ultrasonic B-mode imaging. However, the absence of comparative studies involving various quantitative ultrasound imaging techniques hinders further clinical exploration. In this study, we simultaneously reconstructed ultrasonic Nakagami imaging, ultrasonic horizontally normalized Shannon entropy (hNSE) imaging, and ultrasonic differential attenuation coefficient intercept (DACI) imaging from ultrasound backscattered envelope data collected during high-intensity focused ultrasound ablation treatment. We comprehensively investigated their performance differences through qualitative and quantitative analyses, including the calculation of contrast-to-noise ratios (CNR) for ultrasonic images, receiver operating characteristic (ROC) analysis with corresponding indicators, the analysis of lesion area fitting relationships, and computational time consumption comparison. The mean CNR of hNSE imaging was 10.98 ± 4.48 dB, significantly surpassing the 3.82 ± 1.40 dB (p < 0.001, statistically significant) of Nakagami imaging and the 2.45 ± 0.74 dB (p < 0.001, statistically significant) of DACI imaging. This substantial difference underscores that hNSE imaging offers the highest contrast resolution for lesion recognition. Furthermore, we evaluated the ability of multiple ultrasonic parametric imaging to detect thermal ablation lesions using ROC curves. The area under the curve (AUC) for hNSE was 0.874, exceeding the values of 0.848 for Nakagami imaging and 0.832 for DACI imaging. Additionally, hNSE imaging exhibited the strongest linear correlation coefficient (R = 0.92) in the comparison of lesion area fitting, outperforming Nakagami imaging (R = 0.87) and DACI imaging (R = 0.85). hNSE imaging also performs best in real-time monitoring with each frame taking 6.38 s among multiple ultrasonic parametric imaging. Our findings unequivocally demonstrate that hNSE imaging excels in monitoring HIFU ablation treatment and holds the greatest potential for further clinical exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.