Abstract

Previous studies have demonstrated the usefulness of the Nakagami parameter in characterizing breast tumors by ultrasound. However, physicians or radiologists may need imaging tools in a clinical setting to visually identify the properties of breast tumors. This study proposed the ultrasonic Nakagami image to visualize the scatterer properties of breast tumors and then explored its clinical performance in classifying benign and malignant tumors. Raw data of ultrasonic backscattered signals were collected from 100 patients (50 benign and 50 malignant cases) using a commercial ultrasound scanner with a 7.5 MHz linear array transducer. The backscattered signals were used to form the B-scan and the Nakagami images of breast tumors. For each tumor, the average Nakagami parameter was calculated from the pixel values in the region-of-interest in the Nakagami image. The receiver operating characteristic (ROC) curve was used to evaluate the clinical performance of the Nakagami image. The results showed that the Nakagami image shadings in benign tumors were different from those in malignant cases. The average Nakagami parameters for benign and malignant tumors were 0.69 ± 0.12 and 0.55 ± 0.12, respectively. This means that the backscattered signals received from malignant tumors tend to be more pre-Rayleigh distributed than those from benign tumors, corresponding to a more complex scatterer arrangement or composition. The ROC analysis showed that the area under the ROC curve was 0.81 ± 0.04 and the diagnostic accuracy was 82%, sensitivity was 92% and specificity was 72%. The results showed that the Nakagami image is useful to distinguishing between benign and malignant breast tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call