Abstract

Topological magnetism in low-dimensional systems is of fundamental and practical importance in condensed-matter physics and material science. Here, using first-principles and Monte Carlo simulations, we present that multiple topological magnetism (i.e., skyrmion and bimeron) can survive in van der Waals heterostructure MnTe2/ZrS2. Arising from interlayer coupling, MnTe2/ZrS2 can harbor a large Dzyaloshinskii-Moriya interaction. This, combined with exchange interaction, yields an intriguing skyrmion phase under a tiny magnetic field of 75 mT. Meanwhile, upon harnessing a small electric field, magnetic bimeron can be observed in MnTe2/ZrS2, suggesting the existence of multiple topological magnetism. Through interlayer sliding, both topological magnetisms can be switched on-off. In addition, the impacts of d∥ and Keff on these spin textures are revealed, and a dimensionless parameter κ is utilized to describe their joint effect. These explored phenomena and insights not only are useful for fundamental research in topological magnetism but also enable novel applications in nanodevices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call