Abstract
Standard false discovery rate (FDR) procedures can provide misleading inference when testing multiple null hypotheses with heterogeneous multinomial data. For example, in the motivating study the goal is to identify species of bacteria near the roots of wheat plants (rhizobacteria) that are moderately or strongly associated with productivity. However, standard procedures discover the most abundant species even when their association is weak and fail to discover many moderate and strong associations when the species are not abundant. This article provides a new FDR-controlling method based on a finite mixture of multinomial distributions and shows that it tends to discover more moderate and strong associations and fewer weak associations when the data are heterogeneous across tests. The new method is applied to the rhizobacteria data and performs favorably over competing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.