Abstract

We consider the transient thermal singular stress problem of multiple surface cracking in glass-fiber-reinforced plastics due to a thermal shock at a low temperature. The layered composite is made of a layer bonded between two layers of different physical properties, and it is suddenly cooled on the surfaces. The surface layers contain parallel arrays of the embedded or edge cracks perpendicular to the boundaries. The thermal and elastic properties of the material are dependent on the temperature. For the case of the crack that ends at the interface between orthotropic elastic materials, the order of stress singularity around the tip of the crack is obtained. Finite element calculations are carried out, and the transient thermal stress intensity factors are shown graphically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.