Abstract
AbstractThe theoretical dynamic characteristics of an isothermal continuous flow stirred tank enzyme reactor (CFSTER) operating on two substrates are investigated. Under certain conditions multiple steady states are possible; namely, with an enzyme which binds with the two substrates sequentially. The occurrence of multiple steady states is found to be primarily dictated by three dimensionless parameters which incorporate rate law constants. The global stability of certain steady states is examined by numerically solving the transient material balance on the CFSTER. The effect of recycle on the dynamics of an isothermal plug flow enzyme reactor (PFER) is also studied. A general conclusion indicated by this work is that any open isothermal reaction system wherein the reaction rate law passes through a maximum with increasing substrate concentration and where back mixing occurs with exhibit multiple steady‐state behavior in some operating range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.