Abstract
AbstractPerovskite precursor inks suffer various forms of degradation, such as iodide anion oxidation and organic cation breakdown, hindering reliable perovskite solar cell manufacturing. Here we report that benzylhydrazine hydrochloride (BHC) not only retards the buildup of iodine as previously reported but also prevents the breakdown of organic cations. Through investigating BHC and iodine chemical reactions, we elucidate protonation and dehydration mechanisms, converting BHC to harmless volatile compounds, thus preserving perovskite film crystallization and solar cell performance. This inhibition effect lasts nearly a month with minimal BHC, contrasting control inks without BHC where organic cations fully react in less than a week. This enhanced understanding, from additive stabilization to end products, promises improved perovskite solar cell production reliability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.