Abstract
We consider a Kirchhoff type elliptic problem; \begin{equation*} \begin{cases} -\left(1+\alpha \int_{\Omega}|\nabla u|^2dx\right)\Delta u =f(x,u),\ u\ge0\text{ in }\Omega,\\ u=0\text{ on }\partial \Omega, \end{cases} \end{equation*} where $\Omega\subset \mathbb{R}^2$ is a bounded domain with a smooth boundary $\partial \Omega$, $\alpha > 0$ and $f$ is a continuous function in $\overline{\Omega}\times \mathbb{R}$. Moreover, we assume $f$ has the Trudinger-Moser growth. We prove the existence of solutions of (P), so extending a former result by de Figueiredo-Miyagaki-Ruf [11] for the case $\alpha =0$ to the case $\alpha>0$. We emphasize that we also show a new multiplicity result induced by the nonlocal dependence. In order to prove this, we carefully discuss the geometry of the associated energy functional and the concentration compactness analysis for the critical case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.